Exercise 17

For the following exercises, determine whether there is a minimum or maximum value to each quadratic function. Find the value and the axis of symmetry.

$$
f(x)=4 x^{2}+x-1
$$

Solution

Begin by factoring the coefficient of x^{2}.

$$
f(x)=4\left(x^{2}+\frac{1}{4} x-\frac{1}{4}\right)
$$

In order to write this quadratic function in vertex form, it's necessary to complete the square, which makes use of the following algebraic identity.

$$
(x+B)^{2}=x^{2}+2 x B+B^{2}
$$

Notice that $2 B=\frac{1}{4}$, which means $B=\frac{1}{8}$ and $B^{2}=\frac{1}{64}$. Add and subtract $\frac{1}{64}$ on the right side within the parentheses and use the identity so that x appears in only one place.

$$
\begin{aligned}
f(x) & =4\left[\left(x^{2}+\frac{1}{4} x+\frac{1}{64}\right)-\frac{1}{4}-\frac{1}{64}\right] \\
& =4\left[\left(x+\frac{1}{8}\right)^{2}-\frac{17}{64}\right] \\
& =4\left(x+\frac{1}{8}\right)^{2}-\frac{17}{16}
\end{aligned}
$$

Therefore, the vertex of the parabola is $\left(-\frac{1}{8},-\frac{17}{16}\right)$. The axis of symmetry is $x=-\frac{1}{8}$, and the minimum (because the coefficient of x^{2} is positive) is $y=-\frac{17}{16}$.

